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1. Introduction

Let p, denote the n™ prime. Twin prime conjecture is conjectured that

hm inf(pnﬂ _pn) :2

n—»o0

Lemma 1
According to Aysun and Gocgen (Aysun and Gocgen, 2023):
n,+ p gives all composite numbers where 7 is a positive natural numbers and p is a prime number.
Proof: n +p=p(n+ 1). Then, according to fundamental theorem of arithmetic:
n+t1eC)®@Mm+1eP)
Letn+1eC:
n+l=p x..xp .
Then,

pn+t1)=px(p, x..xp )
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Letn+1el:
n+l=p.
Then,

pn+t1l)=pxp,
Lemma 2
According to Aysun and Gocgen (Aysun and Gocgen, 2023).
2np + p gives all odd composite numbers where 7 is a positive natural numbers and p is an odd prime numbers.

Proof: np + p gives odd composite numbers where p is a odd number and # is a even number. Then as already proved
np + p gives all composite numbers where 7 is a positive natural number and p is an prime number. Only possibility for
odd composite just specified. Therefore, np + p gives all odd composite numbers where p is a odd number and # is a
even number. This equal to: 2np + p gives all odd composite numbers where 7 is a positive natural numbers and p is an
odd prime numbers.

Lemma 3
According to Rhafli (Rhafli, 2019):

2np + p* gives all odd composite numbers where 7 is a natural numbers and p is a odd prime numbers.

Proof: with n» € N and p are all the primes except 2 which satisty p < JN , the equation 2np + p? = all odd composite

is true since if we divide it by p we get the trivial equation for odd numbers. For a given interval / = [a, b] one calculates
the constant # and iterates to generates the odd composites included in the interval /.

Since the proofs of the following statements are dense and long, only the statements accepted as Lemma are given
without citing any evidence, by citing articles directly related to the proof.

Lemma 4

According to Zhang, Maynard and Polymath project (Zhang, 2014; Polymath, 2014; Hasanalizade, 2012):

lim inf (p,., - p,) < 7x10’,

n—»o

lim inf (p,., - p, ) < 4680,

n—o

hm inf(an _pn ) < 246

n—ow

Lemma 5
According to Gocgen (Gocgen, 2024):
The expressions 6n +p, x ... x p, —4 and 6n + p, x ... x p, — 2 produce composite numbers
that cannot be divided by p, ... p, primes, that is, cannot be expressed with 6n +p x ... x p, — 6.
6n+p x..xp —4,6n+p x..xp —2(s. group)
bn+p x..xp +2,6n+tp x.. xp +4(s+1. group)

Accordingly, let’s examine the possibilities in which at least one value in both groups is a composite, and let’s look
at the gap that must remain between the composites forever after a certain number so that the twin primes are not
infinite:

1) 6n+p x..xp —4and 6n+p x..xp +2 canbe composite. Bounded of gaps: 6.
2) 6n+p x..xp —4and6n+p x.. xp +4 canbecomposite. Bounded of gaps: 8.

3) 6n+p x..xp —2and 6n+p x..xp, +2canbe composite. Bounded of gaps: 4.
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4) 6n+p x..xp —2and6n+p x..xp +4canbecomposite. Bounded of gaps: 6.

5) 6n+tp x..xp —4,6n+tp x..xp —~2and6 +p x..xp +2,6n+p x.. xp, +4canbecomposite. Bounded
of gaps: 2.

Then we can pose a new question as follows: Can the gaps between odd composite numbers that are not divisible
byp,, ..., p, be 6 and/or 8 and/or 4 and/or 2 forever after a certain number?

Therefore, the following question arises:

D # 2c: composite numbers that cannot be divided by p , ..., p,:

lim inf (c,,, —¢,)>10?

n—»0

For the difference between composite numbers that cannot be divided by p , ..., p;:

lim(cM —C, ) = ((pk+z *Pra ) - plil)

n—-l

Since p is a prime number, and

lim inf(p,,, — p,) <246

n—oo

has been proven, the number of cases where p, ,  and p, , , differ by 246 is infinite. Therefore (p,, , =x, p,,,=x +246),

lim inf (c,,, —c,) = ((x+ 246-x) —xz)

n—o0

Let’s edit this expression:

lim inf (c,,, —c,) = (x2 +246x—x2)

n—oo

lim inf(c,,, —c, ) =(246x)

n—oo

When it is not forgotten that x is prime:

lim inf (¢,,, —¢,)>10.

n—o

n+l

Accordingly, the gap between odd composite numbers that cannot be divided by p , ..., p, cannot be 6 and/or 8 and/
or 4 and/or 2 forever after a certain number.

Therefore twin primes are infinite.

2. Theorems and Proofs

Let’s apply the same method to the zeta function as Marouane:

11 1 1
e
| 11 1 1 1
?g(s) > 7 e Ty 0
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ct-(1-3) [t St

n=1 (pn n=1 p +2pnC)S

[ 1 1 1 1
_p,, -(1—2—3]_4(S)=Pa+(pa'3)s +(Pa 5 +(pa 7 T

J(S)=[pa~(1 —H {pﬁz — 1

= (p.p,) = (p.(p,+2p,0))

To set the same operation to the zeta function as divisible by more than one prime:

pa'pa#é'(l_%J é’(s)zpa'paﬂc—i_ ! s+ 1 s+ 1 s+”'
i 2] (Pe P 3) (PaPus'S) (P Puri”7)

I 1] < 1 < 1

pa'pa+k' 1_? g( pa pa+k+z s+z s

L - n=1 pa'pa#c'pn) n=1 (pa.pa+k.(pn+2pnc))

é”(S)=[pa-pa+k'(l—2isﬂ [pa pa+k+ni 1 53 l J

(PaPare P0) (P Paci (P, +2D,0))

For those divisible by both primes:

é”(S)=[pa Pk -(1—; ﬂ [pa Pa ¥

For those divisible only by the first prime:

8] (S S

For those divisible only by the second prime:

1T S 2 1
pa+ .(1__5):| pa+ +Z s +2 s
|: ‘ 2 [ ' n=l (pa+k pn) n=1 (pa+/( (pn +2pnc))

If we write the expression steady:

-1
1 2 1 i 1
é”(S)=[pa P '(l_z_sﬂ PuPaci + 2, S+ ;
Py Paci P) (e Pavi (P, +2P,€))

:MS

(PaPare P0) (D Paci (P, +2D,0))
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[ T a 2 1
pa+k.(1_?J:| pa+k+z s +z
L n=1 (

P Pu) (P -(2,+2p,0))

For odd numbers that cannot be divided by the first and second prime (p, must be greater thenp, . ):

§(S) = {Pawm '(1 _2%]:| pa2+k+1 + ( ! + i ! + i 1

pa+k+1 'pa+k+2 )S n=l (pa+k+1 'pn )S n=1 (pa+k+1 (pn +2pnc))s

Now let’s rearrange this expression according to Lemma 4:

ds){pm-[l—zl—sﬂl x2+( Y > :

x-246x) Wi (x-p,) (x(p, +2pnc))s

In this regard, let’s create another function based on the zeta function to simplify our operations:

g:xxx+246x><x+i ! V+i 1 s
n=l (p¢l+k+1 .pﬂ ) n=l (pa+k+l (pn +2pnc))A

0 1 ®© 1
£=x"+246x" + ) -+ -
n=1 (pa+k+1 .pn ) n=l (pa+k+l (pn +2pnc))A

For the difference between odd numbers that are not divisible by the specified primes:

ol 20|35, —— oy !

(Pacin Py) (Parin (2, +2p,0))

ey ! |

(P 2) 7" (Pussr (P, +2p,0)) ‘

The first part to the right of the equation is the part where there is a 246x difference between the numbers that are not
divisible by the specified primes. Considering that there are an infinite number of situations with 216 differences
between them (Lemma 4), there will be a situation with a 216x difference between the only primes that cannot be divided
into an infinite number of specified primes with different x values. This shows the infinity of twin primes, as in Lemma
5, based on the fact that the difference between odd numbers that cannot be divided by certain primes is greater than
10. In addition, by understanding the part on the second side of the equation, it is possible to obtain new information
about the frequencies between primes.
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